
ENS de Lyon Algèbre 1
L3 2023-2024

TD 8 : Formes quadratiques, épisode 2 : Réduction de Gauss et
classification

Les exercices marqués d’un seront corrigés en TD, si le temps le permet.

Sauf mention du contraire, K désigne un corps de caractéristique différente de 2.

Exercice 1. (Réduction de Gauss et théorème de Sylvester)

1. Pour chacune des formes quadratique suivantes, donner une décomposition en somme
de carrés à l’aide de l’algorithme de Gauss, et calculer son rang, son noyau, et son
discriminant.
(a) q1(x, y, z) = (x + y)2 − z2 sur K3 ;
(b) q2(x, y, z) = xy + yz + zx sur K3 ;
(c) q3(x, y, z) = 2x2 + y2 + xy − xz ;

2. On prend K = R. Pour chacune des formes quadratiques ci-dessus, donner leur signa-
ture, un sous-espace maximal sur lequel elles sont définies positives, et un sous-espace
maximal sur lequel elles sont définies négatives.

Exercice 2. (Formes quadratiques associées à la trace)

1. Déterminer le rang des formes quadratiques suivantes, et quand K = R leur signature.
(a) q1(M) = Tr(M)2 sur Mn(K) ;
(b) q2(M) = Tr(tMM) sur Mn(K) ;
(c) q3(M) = Tr(M2) sur Mn(K).

2. Soit S ∈ Sn(R) une matrice symétrique de signature (r, s). Calculer la signature de
q4(M) = Tr(tMSM) sur Mn(R).

Exercice 3. (Signature et mineurs principaux)
Soit (E, q) un espace quadratique. On suppose que q est non dégénérée.

1. Soit δ le determinant d’une matrice de q. Soit H un hyperplan de E et (e1, . . . , en−1)
une base de H orthogonale pour q. Montrer qu’il existe en ∈ E tel que e = (e1, . . . , en)
est une base de E et tel que la matrice de q dans la base e soit diagonale de détermi-
nant δ.

2. Pour une matrice A ∈ Mn(K) et i ∈ J1, nK, on note ∆i le i-ième mineur principal de
A, c’est-à-dire le déterminant de la matrice (Ak,ℓ)k,ℓ∈J1,iK.
Soit S ∈ Sn(K) la matrice de q dans une base de E. On suppose que tous les mineurs
principaux de S sont non nuls. Montrer qu’il existe une base de E telle que la matrice
de q dans cette base soit diagonale égale à

diag
(

∆1(S), ∆2(S)
∆1(S) , . . . ,

∆n(S)
∆n−1(S)

)
.
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3. On garde les notations et les hypothèses de la question précédente. On suppose que
K = R. Montrer que la signature de q est égal à (n − s, s) où s est le nombre de
changement de signes dans la suite (1, ∆1(S), ∆2(S), . . . , ∆n(S)).

Exercice 4. (Formes quadratiques anisotropes réelles et Cauchy-Schwarz)
Soit (E, q) un espace quadratique réel. On note ϕ la forme polaire de q.

1. Montrer que q est anisotrope si et seulement si q est définie positive ou définie négative.
2. On suppose que q est non nulle. Montrer que q est anisotrope si et seulement elle

vérifie l’inégalité de Cauchy-Schwarz :

∀x, y ∈ E, ϕ(x, y)2 ⩽ q(x)q(y),

avec égalité si et seulement si x et y sont liés.
3. Montrer que ker(q) = C(q) si et seulement si q est positive ou négative.

Exercice 5. (Formes quadratiques sur les corps finis)
Soit p un nombre premier différent de 2 et Fq un corps fini à q = pk éléments.

1. (a) Déterminer le noyau du morphisme c : F×
q → F×

q , définie par x 7→ x2. En déduire
qu’il y a q+1

2 carrés dans Fq.
(b) Montrer que pour a, b ∈ F×

q , l’équation ax2 + by2 = 1 a toujours des solutions
dans Fq.

On fixe α ∈ F×
q qui n’est pas un carré dans Fq. Soit (E, Q) un Fq-espace vectoriel quadratique.

On note n = dim(E).
2. On suppose dim(E) = 1 et Q non dégénérée. Montrer qu’il existe une base de E telle

que la matrice de Q dans cette base est égale à (1) ou (α).
3. On suppose uniquement que Q est non dégénérée. Montrer qu’il existe une base de E

telle que la matrice de q dans cette base est égale à In ou
(

In−1 0
0 α

)
.

4. En déduire que, dans le cas général, Q peut s’écrire

Q =
r∑

i=1
λ2

i ou Q =
r−1∑
i=1

λ2
i + αλ2

r

où r ⩽ n et les λi ∈ E∗ sont des formes linéaires linéairement indépendantes.

Exercice 6. (Loi de réciprocité quadratique)

Soit p un nombre premier impair. On définit le symbole de Legendre
(

·
p

)
: Z → {−1, 0, 1}

par (
a

p

)
=


0 si p | a
1 si p ∤ a et a est un carré modulo p
−1 si a n’est pas un carré modulo p

On a de plus
(

a
p

)
≡ a

p−1
2 [p].
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On veut démontrer dans cet exercice la loi de réciprocité quadratique : Pour tout nombres
premiers impairs distincts p, q, on a(

p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 .

On note X = {(x1, ..., xp) ∈ Fp
q |

p∑
i=1

x2
i = 1}. On va calculer son cardinal de deux manières

différentes.
1. On fait agir Z/pZ sur X par k · (x1, ..., xp) = (xk+1, ..., xk+p).

(a) Que dire sur les orbites de l’action ?
(b) En utilisant la formule des classes, démontrer que |X| ≡ 1 +

(
p
q

)
[p].

2. On note f la forme quadratique de Fp
q définie par :

f(x1, ..., xp) = x2
1 + ... + x2

p.

On note d = p−1
2 , et g la forme quadratique de Fp

q définie par :

g(y1, z1, ..., yd, zd, t) = 2
d∑

i=1
yizi + (−1)dt2.

(a) À l’aide de l’exercice précédent, montrer que f et g sont congruentes. En déduire
que |X| = |X ′|, où X ′ = {(y1, z1, ..., yd, zd, t) ∈ Fp

q | 2
d∑

i=1
yizi + (−1)dt2 = 1}. On

va à présent compter les éléments de X ′.
(b) Combien y a-t-il d’éléments de X ′ tels que tous les yi sont nuls ?
(c) Combien y a-t-il d’éléments de X ′ tels qu’au moins un des yi est non nul ?

3. Conclure en démontrant la loi de réciprocité quadratique.

Exercice 7.

Soit E un C-espace vectoriel de dimension finie, et soit q : E → C une forme quadratique.
Montrer que Re(q) : x 7→ Re(q(x)) est une forme quadratique sur le R-espace vectoriel

E et donner sa signature en fonction du rang de q.

Exercice 8. (Topologie de l’espace des formes quadratiques réelles)
Soit E un R-espace vectoriel de dimension finie. Pour p, q ∈ J0, nK tels que p + q ⩽ n,

on note Qp,q(E) l’ensemble des formes quadratiques sur E de signature (p, q).
1. Montrer que Qn,0(E) et Q0,n(E) sont ouverts dans Q(E).
2. Montrer que l’adhérence de Qp,q(E) est incluse dans X := ⋃

p′⩽p,q′⩽q
Qp′,q′(E).

3. Montrer que Q(E)\X est ouvert. (Indication : Pour Q ∈ Q(E), considérer les applica-
tions qui à une forme quadratique de E associe sa restriction au sous-espace maximal
défini positif (resp. défini négatif) de Q.)

4. En déduire que X est l’adhérence de Qp,q(E).
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Exercice 9. (Sous-espaces totalement isotropes : le retour)
On reprend les notations de l’exercice 9 du TD précédent. Soit q une forme quadra-

tique réelle non dégénérée de signature (s, t). Démontrer que la dimension d’un SETIM est
min(s, t).

Exercice 10.

Soit P ∈ R[X] un polynôme de degré n. On note x1, . . . , xd les racines complexes dis-
tinctes de P , et m1, . . . , md leurs multiplicités respectives.

On définit une forme bilinéaire symétrique sur le R-espace vectoriel E := Rn−1[X] :

ϕ(R, S) :=
d∑

i=1
miR(αi)S(αi).

On pose enfin I ⊂ J1, dK l’ensemble des i tels que αi ∈ R ; et J1, dK \ I = J ⊔ J∗ tel que à
tout j ∈ J correspond j∗ ∈ J∗ tel que αj∗ = αj.

1. Montrer que ϕ est bien à valeurs réelles.
2. Pour tout x ∈ C, on note evx : E → C l’évaluation en x.

(a) Montrer que les formes linéaires (evαi
)i∈J1,dK sont linéairement indépendantes dans

le C-espace vectoriel des formes R-linéaires f : E → C.
(b) On pose pour j ∈ J1, dK

ϕj :=


evαj

si j ∈ I
evαj

+ evαj
si j ∈ J

i(evαj
− evαj

) si j ∈ J∗

Vérifier que pour tout j ∈ J1, dK, ϕj est à valeurs dans R et déduire que les
(ϕj)j∈J1,dK sont linéairement indépendantes dans le R-espace vectoriel E∗.

3. On note (r, s) la signature de ϕ. En exprimant ϕ à l’aide des ϕj, montrer que l’on a
(r, s) = (#I + #J, #J), et donc que r + s est le nombre de racines distinctes de P et
r − s est le nombre de racines réelles de P 1.

1. Un calcul donne ϕ

(
n−1∑
k=0

rkXk,
n−1∑
ℓ=0

sℓX
ℓ

)
=

∑
0⩽k,ℓ⩽n−1

σk+ℓrksℓ, où σk =
d∑

i=1
mix

k
i . Les σk sont appe-

lées sommes de Newton, et on peut les déterminer uniquement à partir des coefficients du polynôme P à
l’aide des relations coefficients-racines. Le résultat de l’exercice est donc que l’on peut compter le nombre
de racines distinctes et de racines réelles distinctes d’un polynôme de R[X] sans avoir à le factoriser !
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