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TD 8 : FORMES QUADRATIQUES, EPISODE 2 : REDUCTION DE GAUSS ET
CLASSIFICATION

Les exercices marqués d’un seront corrigés en TD, si le temps le permet.
Sauf mention du contraire, K désigne un corps de caractéristique différente de 2.
Exercice 1. (Réduction de Gauss et théoreme de Sylvester)

1. Pour chacune des formes quadratique suivantes, donner une décomposition en somme
de carrés a l'aide de l'algorithme de Gauss, et calculer son rang, son noyau, et son
discriminant.

(a) q1 <x7yv
(b) QZ<x7yv
(¢) a3(z,y,2) = 22" +y* + 2y — 22

2. On prend K = R. Pour chacune des formes quadratiques ci-dessus, donner leur signa-

ture, un sous-espace maximal sur lequel elles sont définies positives, et un sous-espace
maximal sur lequel elles sont définies négatives.

= (z+y)? — 2% sur K3;
= xy +yz + zx sur K3

2)
2)

Exercice 2. (Formes quadratiques associées a la trace)

1. Déterminer le rang des formes quadratiques suivantes, et quand K = R leur signature.
(@) @1(M) = Tr(M)? sur M, (K);
(b) ¢(M) =Tr(*MM) sur M, (K);
(c) gs(M) = Tr(M?) sur M,,(K).

2. Soit S € S,(R) une matrice symétrique de signature (r,s). Calculer la signature de
(M) =Tr(*MSM) sur M, (R).

Exercice 3. (Signature et mineurs principaux)

Soit (F, q) un espace quadratique. On suppose que ¢ est non dégénérée.

1. Soit 0 le determinant d’une matrice de ¢. Soit H un hyperplan de E et (e1,...,€,-1)

une base de H orthogonale pour ¢. Montrer qu'il existe e,, € F tel que e = (ey,...,€,)
est une base de F et tel que la matrice de ¢ dans la base e soit diagonale de détermi-
nant 9.

2. Pour une matrice A € M, (K) et i € [1,n], on note A; le i-itme mineur principal de
A, c’est-a-dire le déterminant de la matrice (Ax )k ccqi,i-
Soit S € S, (K) la matrice de g dans une base de E. On suppose que tous les mineurs
principaux de .S sont non nuls. Montrer qu’il existe une base de F telle que la matrice
de g dans cette base soit diagonale égale a

Aq(S5) An(S) )
TAL(S)T T A(S))

diag <A1(5>
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3. On garde les notations et les hypotheses de la question précédente. On suppose que
K = R. Montrer que la signature de ¢ est égal a (n — s,s) ou s est le nombre de
changement de signes dans la suite (1, A1(S), Ao(S), ..., An(S)).

Exercice 4. (Formes quadratiques anisotropes réelles et Cauchy-Schwarz)

Soit (E, q) un espace quadratique réel. On note ¢ la forme polaire de g.
1. Montrer que ¢ est anisotrope si et seulement si g est définie positive ou définie négative.

2. On suppose que ¢ est non nulle. Montrer que ¢ est anisotrope si et seulement elle
vérifie I'inégalité de Cauchy-Schwarz :

Va,y € E, ¢(z,y)* < q(z)q(y),

avec égalité si et seulement si x et y sont liés.

3. Montrer que ker(q) = C(q) si et seulement si ¢ est positive ou négative.

Exercice 5. (Formes quadratiques sur les corps finis)

Soit p un nombre premier différent de 2 et F, un corps fini & ¢ = p* éléments.
1. (a) Déterminer le noyau du morphisme c : F;¢ — [, définie par z 22, En déduire
quiil y a q;r—l carrés dans IF,.

(b) Montrer que pour a, b € Fy, I’équation ax® 4+ by?> = 1 a toujours des solutions
dans IF,.

On fixe @ € F¢ qui n’est pas un carré dans F,. Soit (£, Q) un [F,-espace vectoriel quadratique.
On note n = dim(F).

2. On suppose dim(E) = 1 et @ non dégénérée. Montrer qu'il existe une base de E telle
que la matrice de ) dans cette base est égale a (1) ou («).

3. On suppose uniquement que @) est non dégénérée. Montrer qu’il existe une base de £

telle que la matrice de ¢ dans cette base est égale a I, ou (]"61 2 .

4. En déduire que, dans le cas général eut s’écrire
que, ) p

r r—1
Q=N ou Q=1 AN+a\
=1 =1

our <netles \; € E* sont des formes linéaires linéairement indépendantes.

Exercice 6. (Loi de réciprocité quadratique)
Soit p un nombre premier impair. On définit le symbole de Legendre ( ) 17— {-1,0,1}

P
par

0 sipla
a ) )
<> =<¢ 1 siptaetaestun carré modulo p
—1 sia n’est pas un carré modulo p

On a de plus (%) =a"7 [p].



On veut démontrer dans cet exercice la loi de réciprocité quadratique : Pour tout nombres
premiers impairs distincts p, ¢, on a

CERE

On note X = {(x1,...,7,) € F? | ié z? = 1}. On va calculer son cardinal de deux maniéres
différentes.
1. On fait agir Z/pZ sur X par k- (21, ..., %p) = (Tht1, - Thtp)-
(a) Que dire sur les orbites de I'action ?
(b) En utilisant la formule des classes, démontrer que | X| =1+ (%) [p].

2. On note [ la forme quadratique de F? définie par :
[, xp) =23 + ..+ 2

On note d = %, et g la forme quadratique de [ définie par :

d
g(yla Z1y -+ Ydy Zd; t) = 221/221 + <_1)dt2
=1

(a) A l'aide de I'exercice précédent, montrer que f et g sont congruentes. En déduire
que | X| = |X'|, ot X" = {(y1, 21, Y, 24, 1) € F? | QiZ:i:lyizi + (=1)%2 =1}. On
va a présent compter les éléments de X'.

(b) Combien y a-t-il d’éléments de X’ tels que tous les y; sont nuls?

(c) Combien y a-t-il d’éléments de X’ tels qu’au moins un des y; est non nul ?

3. Conclure en démontrant la loi de réciprocité quadratique.

Exercice 7.

Soit E un C-espace vectoriel de dimension finie, et soit ¢ : £ — C une forme quadratique.
Montrer que Re(q) :  — Re(g(x)) est une forme quadratique sur le R-espace vectoriel
E' et donner sa signature en fonction du rang de q.

Exercice 8. (Topologie de 'espace des formes quadratiques réelles)

Soit E un R-espace vectoriel de dimension finie. Pour p, ¢ € [0,n] tels que p + ¢ < n,
on note 9, ,(E) 'ensemble des formes quadratiques sur E de signature (p, q).

1. Montrer que Q,o(E) et Qo ,(E) sont ouverts dans Q(F).
2. Montrer que 'adhérence de Q,,(E) est incluse dans X := U Qy ,(E).

P'<p,q'<q
3. Montrer que Q(F)\ X est ouvert. (Indication : Pour ) € Q(FE), considérer les applica-
tions qui a une forme quadratique de E associe sa restriction au sous-espace maximal
défini positif (resp. défini négatif) de @.)

4. En déduire que X est I'adhérence de 9, ,(E).



Exercice 9. (Sous-espaces totalement isotropes : le retour)

On reprend les notations de l'exercice 9 du TD précédent. Soit ¢ une forme quadra-
tique réelle non dégénérée de signature (s,t). Démontrer que la dimension d’un SETIM est
min(s, t).

Exercice 10.

Soit P € R[X] un polynéme de degré n. On note z1,...,x, les racines complexes dis-
tinctes de P, et mq, ..., mg leurs multiplicités respectives.
On définit une forme bilinéaire symétrique sur le R-espace vectoriel £ :=R,_[X] :

d

i=1
On pose enfin I C [1,d] 'ensemble des i tels que a; € R et [1,d] \ I = J U J* tel que a
tout j € J correspond j* € J* tel que o« = @;.
1. Montrer que ¢ est bien a valeurs réelles.
2. Pour tout x € C, on note ev, : E — C I’évaluation en x.

(a) Montrer que les formes linéaires (evy, )icp1,4) sont linéairement indépendantes dans
le C-espace vectoriel des formes R-linéaires f : E — C.

(b) On pose pour j € [1,d]

eVa, sijel
¢j = €Vq, +eVgr sijged
i(eve, —eva;) sije J*

Vérifier que pour tout j € [1,d], ¢; est a valeurs dans R et déduire que les
(¢5)jen,q sont linéairement indépendantes dans le R-espace vectoriel £*.

3. On note (r,s) la signature de ¢. En exprimant ¢ a l'aide des ¢;, montrer que 'on a
(r,s) = (#1 + #J,#J), et donc que 7 + s est le nombre de racines distinctes de P et
r — s est le nombre de racines réelles de P!,

n—1 n—1 d
1. Un calcul donne ¢ (Z e Xk 3 SeX€> = S Operse, ot o = Y mxk. Les oy sont appe-
k=0 £=0 0<k,f<n—1 i=1
lées sommes de Newton, et on peut les déterminer uniquement & partir des coefficients du polynéome P a
I’aide des relations coefficients-racines. Le résultat de ’exercice est donc que 'on peut compter le nombre

de racines distinctes et de racines réelles distinctes d’un polynéme de R[X] sans avoir a le factoriser !
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